C. U. SHAH UNIVERSITY, WADHWAN CITY. Faculty of: Sciences and Life Sciences **Course: Bachelor of Science (Mathematics)** Semester: I Subject Code: CHE201-1C Subject Name: Fundamentals of Chemistry-I | | | Teaching hours/ Week Credi Credi | | | Evaluation Scheme/ Semester | | | | | | | | | | | | | |----|---------|----------------------------------|--------------------------------|--------|-----------------------------|--------|------------|---|----------------|----------------------------------|------------------------|---------|------|---------|-------|---------|-----| | Sr | | | | Credi | Credi | Theory | | | | Tutorial / Practical | | | | | | | | | No | Categor | t Code | Subject Name | T
h | Tu | Pr | t
hours | t t Continuous and End Semest Comprehensive Exams | | xams | Internal
Assessment | | | | Total | | | | | | | | | | | | | Ma | Marks | Mar | Duratio | Mark | Duratio | Mark | Duratio | | | | | | | | | | | | rks | | ks | n | S | n | S | n | | | 3 | | CHE2
01-1C | Fundamentals of
Chemistry-I | 3 | - | 2 | 5 | 4 | 10
10
05 | Assignment
Quiz
Attendance | 50 | 2 | 25 | 1 | - | - | 100 | ## **AIM** - Aware students of the history of chemistry and its scope. - Acquaint the basic concept of Analytical Chemistry as a subject. - Basic concepts related to Organic and Analytical chemistry. - Learn laboratory skills for handling glassware and chemicals for safety purposes. ## **COURSE CONTENTS** ## **Course Outline for Theory** | UNIT | COURSE CONTENT | | | | |------|---|----------|--|--| | I | Chemical Thermodynamics Definition of thermodynamic terms: System, surrounding etc. Types of systems. Intensive & extensive properties, state of path functions, thermodynamic process, concept of heat & work. First law of Thermodynamics.:- Statement, definition of internal energy & enthalpy, heat capacity, heat capacities of constant volume & pressure & their relationship. Joule's law calculation of W, q, dU and dH for the expansions of ideal gases under isothermal & adiabatic conditions for reversible process. Limitations of first law of Thermodynamics. Second law of Thermodynamics. Different statements of Second law of Thermodynamics. Definition of entropy and free energy, Significance of entropy in a reaction. Carnot theorem, Carnot cycle and its efficiency. Thermodynamic scale of temperature. Numerical based on first and second law of thermodynamics. | HOURS 15 | | | | II | V.B. & M.O. Theory • Valence bond theory of chemical bonding, | 15 | | | | | Explanation of formation of covalent bond by Lewis theory. Limitations of Lewis theory, V.B.T. for formation of covalent bond. | | |---|---|----| | | • Overlapping of s-s, s-p & p-p orbital. | | | | • Explanation of H ₂ , N ₂ , O ₂ , F ₂ , NH ₃ , H ₂ O & HF molecules by V.B.T. | | | | • Limitations of V.B.T, Formation of bonding and anti-bonding molecular orbitals and bond order. | | | | Order of energy for molecular orbitals. | | | | Molecular orbital diagram of homonuclear diatomic molecules | | | | • Molecular orbital diagram of ions such as H ₂ , H ₂ ⁺ , He ₂ , He ₂ ⁺ | | | | IUPAC Nomenclature | | | | • IUPAC nomenclature of monofunctional aliphatic, alicyclic, and aromatic organic compounds such as alkanes, alkenes, alkynes, alkyl halides, nitro, alcohols, aldehydes, ketones, carboxylic acids, esters, amines, nitriles, ethers, and amides. | | | | Basic Analytical Chemistry Introduction, Qualitative and Quantitative analysis, Instrumental and Chemical Methods of Analysis, Selection of Methods, limitations of Analytical Methods | | | ш | Classification of Errors, Accuracy, and Precision, Absolute and Relative Error, Minimization of Error, Statistical Terms: Mean, Median, Standard Deviation, Reliability of Results (Q-test), Comparison of Results: Student's t-test and F-test, confidence limit (interval), Numerical based on above topics. | 15 | | | Modes of Concentration Preparation of Standard Solutions: Equivalent weight of acid and base, Equivalent weight of acid salt, Equivalent weight of an ion, Molarity with numerical, Normality with numerical, Molality with numerical, Strength of solutions: %Concentration w/v, Weight Fraction, Volume Fraction, Examples | | ## **Course Outline for Practical** | SR. NO | COURSE CONTENT | |--------|---| | | Demonstrative Practicals | | | Introduction to the laboratory, safety rules during practicals, and knowledge about | | 1 | different signs and symbols regarding hazardous materials. | | | Calibration and use of apparatus/common glassware (Measuring Cylinder and flasks) | | | Qualitative Analysis of Organic Compound (Minimum 6) | | 2 | Organic compounds containing the following groups: | | | Carboxylic Acid, Phenol, Amine, Hydrocarbon. | | | Qualitative Analysis of Inorganic Salts (Minimum 6) | | 2 | Inorganic salts containing two radicals | | 3 | Anion: Cl ⁻ , Br ⁻ , I ⁻ , NO ₂ ⁻ , SO ₄ ⁻² , CO ₃ ⁻² , CrO4 ⁻² , Cr ₂ O ₇ ⁻² | | | Cation: Group I to VI positive ions | | | Total Hours = 30 | # TEACHING METHODOLOGY - Conventional method (classroom blackboard teaching) - ICT Techniques - Teaching through the classroom, laboratory work - variety of learning styles and tools (PowerPoint presentations, audio-visual resources, e-resources, - seminars, workshops, models) - Teaching through laboratory work #### LEARNING OUTCOME - Expand the basic knowledge of chemistry - To understand the fundamentals of thermodynamics - To learn about various theories of bonding in chemistry - To acquire knowledge of the nomenclature system of IUPAC - To learn the basics of analytical chemistry - Understanding the importance of laboratory work and laboratory safety - Acquire knowledge about types of glassware and their calibration - Development of analytical skills by analysis of various organic and Inorganic compounds ## ARRANGEMENT OF LECTURE DURATION AND PRACTICAL SESSION AS PER DEFINED CREDIT NUMBERS | Units | | Duration
Hrs.) | Cre | ation of
edits
mbers) | Total
Lecture
Duration | Credit
Calculation | |------------------------|--------|-------------------|--------|-----------------------------|------------------------------|-----------------------| | | Theory | Practical | Theory | Practical | Theory+
Practical | Theory+
Practical | | Unit – 1 | 15 | | | | | | | Unit – 2 | 15 | 30 | 3 | 1 | 45+30 | 4 | | Unit – 3 | 15 | | | | | | | TOTAL | 45 | 30 | 3 | 1 | 75 | 4 | #### **EVALUATION** | Theory Marks | Practical Marks | Total Marks | | | |--------------|-----------------|-------------|--|--| | 75 | 25 | 100 | | | # **REFERENCE BOOKS:** | 1 | Principles of Inorganic Chemistry | B.R. Puri, L.R. Sharma & K.C Kalia, | |---|--|--| | 2 | Organic Chemistry | Morrison Boyd | | 3 | Principles of Physical Chemistry | Puri, Sharma, Pathania. | | 4 | Fundamental of analytical chemistry | Skoog & West | | 5 | Vogel's Qualitative Inorganic Analysis | G. Svehla, B. Sivasankar | | 6 | Practical Chemistry | Pandey, O. P., Bajpai, D. N., Giri, S. |